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Abstract 
 
The step-diagonal test modifies the diagonal displacement test for machine tool 
performance evaluation by executing a diagonal as a sequence of single-axis 
motions. The proposed modification has gained interest because of the claim that 
the obtained additional data enables the estimation of parametric machine errors, 
in particular straightness and positioning errors. This paper addresses the 
properties of the estimated errors for machines with significant angular errors. 
The theoretical analysis shows that the estimated straightness and positioning 
errors can have significant errors if the effects of several angular errors are not 
corrected. A correction for some angular errors can be achieved by repeating a 
step-diagonal with a different sequence of axis motions. The thus estimated 
angular errors are expected to have larger uncertainties than those obtained 
through direct measurement. Use of a retro-reflector eliminates the introduced 
errors for some angular errors. Our analysis confirms that setup errors in the 
alignment of the return mirror cause significant errors in the slope of the 
estimated positioning errors that cannot be detected from the (step-) diagonal 
measurements. Correction requires information on the slope of the positioning 
errors of two axes. Finally, the analysis shows that it is not possible to uniquely 
allocate non-repeatable machine behavior to the various parametric errors. 
  
1 Introduction 
 
The step-diagonal or vector-measurement technique [1,2,3] is a proposed method 
to measure geometric errors of machine tools or coordinate measuring machines. 
The test differs from the diagonal displacement test described in standards for 
machine tool performance evaluation (e.g., ASME B5.54:2005 and ISO 230-
6:2002). The diagonal displacement test involves measuring errors in the actual 
travel of the tool along a face or body diagonal. It provides samples for the 
combined effects of parametric errors, but does not allow them to be estimated.  
     In the step-diagonal test, each new point on the diagonal is reached through a 
sequence of single-axis motions. At the end of each axis step, the error in the tool 



displacement is measured along the diagonal using a laser interferometer (Figure 
1). Two configurations have been proposed [1]. One has a mirror attached to the 
tool that reflects the laser beam back to the interferometer. This configuration is 
applied in the field and is the focus of this paper. The second configuration has a 
large retro-reflector as a target. The retro-reflector returns the beam to a mirror 
on the workholding component of the machine, which in turn reflects the beam 
back into itself to the interferometer. In both cases, the target has to be large 
enough to return the laser beam when the tool is moved away from the diagonal. 
     For typical machines, angular errors during axis motions cause significant 
errors in the position and orientation of the tool throughout the workzone, and an 
assessment of their effects is important. Published methods to analyze data 
obtained with the step-diagonal test either assume that the effects of the angular 
errors are negligible, or alternatively, do not completely address these effects. 
     This paper explicitly addresses machines with significant angular errors. We 
describe the characteristics of the obtained error estimates when angular errors 
are ignored in the analysis. The combination of parametric errors that can be 
estimated is identified. The presented analytical solutions illustrate key 
properties of the obtained error estimates, but do not exploit some redundancies 
in step-diagonal data to reduce uncertainties. The latter can be achieved using a 
less-transparent linear regression approach where the identifiable error 
combinations are simultaneously estimated using all measurement data. The 
equations in this paper form a basis for such an approach.  
  
2 Basic equations 
 
Analysis of the step-diagonal method is achieved through two models. The 
kinematic model describes the errors in the position and orientation of the tool as 
a function of parametric machine errors, i.e., the positioning, angular, and 
straightness errors of each axis and the errors in the alignment of axes. The task 
error model describes the errors of a task, in this case the measurement of a step-
diagonal, as a function of the errors in the position and orientation of the tool. 
     The kinematic model used assumes small angular errors, allowing for first-
order approximations of their effects, and rigid-body kinematics, yielding 

Figure 1  Principle of the step-diagonal method and symbolism used. 
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parametric errors that are only affected by the position of one machine axis. For 
the machine depicted in Figure 2, the errors ],,[ zyx eeee =

r
 and ],,[ zyx εεεε =

r
 

in the position and orientation of the tool can be expressed as: 
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where )(yex  and )(yxε , for example, denote the translation and angular errors 
in/around X when moving Y. The squareness errors xyS , yzS  and xzS  have a 
positive value if the angle between the machine axes exceeds 90°. The position 
of the coordinate frame used, i.e., the reference lines where the parametric errors 
are defined, is arbitrary but affects the values of the positioning, straightness, and 
squareness errors.  
     The sensitive direction of both diagonal and step-diagonal measurements is 
determined by the direction n

r
 of the laser beam. For diagonal measurements, the 

beam intersects the target mirror nominally at the same point. We define this 
intersection as the point of the tool whose position errors are described by the 
kinematic model. This yields the following equation for the error 2,1dδ  in a 
diagonal displacement 2,1d  between positions 1p  and 2p : 
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For a step-diagonal measurement, we consider a machine position 3p  that is not 
on the diagonal (Figure 1). At this position, the laser beam intersects the target 
mirror with normal m

r
 at an offset a

r
 defined by: 

Figure 2  The studied machine configuration 
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The offset a

r
 yields an Abbe offset for the angular errors ε

r
 of the tool, resulting 

in an additional term ))(( 3 apn
rrrr

×⋅ ε  in the observed displacement error 3,1dδ . 
This term is not present when a retro-reflector is used as target. Thus the 
respective step-diagonal measurements are not sensitive to angular errors that 
only affect tool orientation (Y-axis yaw and the angular errors of the Z-axis), 
unless repeated with a different tool offset.  
     Setup errors may cause a misalignment of the laser beam and the return 
mirror relative to the machine axes. A misalignment of the laser beam changes 
the offset a

r
 and the sensitive direction, resulting in second-order measurement 

errors. A misalignment mε
r

 of the return mirror relative to the machine axes, 
however, results in a first-order error )( an m

rrr
×⋅ ε  due to the offset a

r
 in the 

position of the beam on the mirror. The error equals the misalignment angle in 
the plane spanned by the laser beam and the tool path times the travel || a

r
 of the 

laser spot on the target. The error reduces to zero for positions on the diagonal. 
The same first-order error occurs for the retro-reflector configuration. Here the 
offset on the return mirror is doubled, but the resulting error occurs in only half 
of the laser path between reference and tool. In most setups, the laser beam is 
first aligned to the machine motion, after which the mirror is aligned to the laser.  
     For the two configurations, the observed error 3,1dδ  when moving from a 
point 1p  on the diagonal to an arbitrary point 3p  can now be summarized as: 
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3 Diagonal displacement measurements 
 
In this section we analyze the sensitivity of diagonal displacement measurements 
between the corners of the workzone to the parametric errors. Application of 
Equations (1) and (2) yields for the errors of body diagonals AG and DF (Fig. 2): 
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where, for example, )(yxε∆  denotes the total change in the pitch error )(yxε  of 
the Y-axis over the evaluated axis travel Y∆ , and xn , yn and zn are the 
direction cosines of diagonal AG. Combining the measurements of all four body 
diagonals, each with a nominal length D , yields: 
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In Equation (7), the angular errors modify the positioning errors to represent 
positioning errors at lines through the center of the workzone. The squareness 
errors in Equations (8-10) are similarly modified to represent the average of 
alignment errors at the edges of the workzone. The straightness terms equal zero 
if straightness errors are modeled relative to the line through the axis end-points. 
     The equations show that errors in the total diagonals yield information on the 
“average” squareness errors and one linear combination of the modified 
positioning errors. Thus small diagonal errors do not imply small parametric 
errors, as the latter can compensate each other for the diagonal displacements 
[4]. The slope of positioning errors requires particular care, as exact 
compensation can occur for all points on a diagonal. Estimating squareness 
errors from diagonal measurements is challenging [4]. The sensitivity is affected 
by the aspect ratio of the addressed workzone. The best estimate is obtained for a 
machine with equal axis lengths, using face diagonals. For a machine with aspect 
ratio cbZYX ::1:: =∆∆∆ , the uncertainty )( xySu  of the estimated squareness 
error is related to the relative uncertainty DDu /)(δ  in the measurement of a 
diagonal D  by: 
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4 Two-dimensional step-diagonal measurements 
 
Face-diagonal measurements have an increased sensitivity to a reduced number 
of machine errors. In this section, we analyze the information obtained from 
step-diagonal measurements in a plane of two machine axes when the mirror is 
attached to the tool. At the end of the section we discuss the retro-reflector setup.  
     Figure 3 shows the evaluated measurements in the bottom XY-plane. Each 
new target point 1+i  on the diagonal corresponds to one new target point for 
each axis, yielding 632 =×  new parametric error values that affect the 
measurements: )( 1+ix xe , )( 1+iy xe , )( 1+iz xε , )( 1+ix ye , )( 1+iy ye  and 

)( 1+iz yε . The new point on the diagonal can be reached by two sequences of 
unidirectional single-axis motions, yielding four measurements for the errors in 
the change in laser reading during a single-axis step: ABdδ , BCdδ , ADdδ , and 

DCdδ . The four measurements are not independent, however, as the sum of the 
systematic errors during both sequences equals the diagonal displacement error, 
i.e., ABdδ + BCdδ = ADdδ + DCdδ = ACdδ . In other words, the differences 
between errors of parallel steps have an equal value: DCdδ - ABdδ = BCdδ - ADdδ .  
     Let )( ix xe∆  denote the change )()( 1 ixix xexe −+  in the positioning error of 
the X-axis when moving over a distance x∆ from position ix to 1+ix . 
Application of this notation to the equations of Section 2 yields: 
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Figure 3  The evaluated step-diagonal measurements 
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where xn  and yn  are the direction cosines of diagonal AC, d is the nominal 
length of a diagonal step, and 1mε  is the error in mirror alignment for diagonal 
1. Note that an error mε  in mirror alignment causes equal but opposite errors 

myx dnn ε  in measured displacements during X- and Y-axis moves.  
     The difference between the errors of parallel segments of a diagonal step, e.g., 

DCdδ - ABdδ , is not affected by systematic errors in positioning, straightness, 
and squareness, as both segments have the same axis motion and sensitive 
direction. The difference is also not affected by any angular error that has the 
same constant value for both segments (Figure 4). Thus an error mε  in mirror 
orientation cannot be detected from the results of a step-diagonal measurement. 
Furthermore, the difference is not affected by a change in the angular error of the 
machine axis that carries the other axis ( )( iz xε∆  in this example, see Figure 4). 
The center of rotation of this angular error is fixed during the motion of the other 
axis, and as a result does not affect the relative distance and parallelism of the 
mirror surface when moving this axis. Therefore, it does not cause an error in the 
respective segments BCdδ and ADdδ , and by extension in the difference BCdδ -

ADdδ = DCdδ - ABdδ . It does cause an equal error in both DCdδ  and ABdδ . 
     The only systematic error that causes a difference between parallel segments 
of a diagonal step is the change in Y-axis yaw )( iz yε∆ . This allows this error to 
be estimated irrespective of errors in mirror alignment (Equation 14). The 
uncertainty is affected by non-repeatable measurement and machine errors: 
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Figure 4  The difference between the errors of parallel 
segments, e.g., ABDC dd δδ − , is not affected by a constant 
error in mirror orientation or a change in X-axis yaw. 
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  For a step size of 100 mm in each axis, a standard deviation of 1 µm in ABdδ  
and DCdδ  yields a standard deviation of 20 µrad in the estimated change of the 
angular error. Although the small Abbe offset used in the estimation results in a 
relatively high uncertainty, it may be possible to use the estimated error to 
compensate step-diagonal measurements, since its leverage is determined by a 
similar small offset. 
     As differences between parallel segments of a diagonal step only yield Y-axis 
yaw, there is only information left to estimate four independent combinations of 
parametric errors. Estimates for the change in positioning errors are obtained as:  
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The first two terms of Equation (19) can be interpreted as the change in the 
positioning error of the X-axis at a line through the center of the workzone. The 
estimate is affected by the difference in mirror misalignment of both diagonals. 
Since the positioning error is obtained by adding the obtained estimates for the 
changes in the positioning error, the contamination accumulates [4]. The result is 
an error in the slope of the estimated positioning error, yielding an error equal to 

Ymm ∆⋅−− )(2/1 21 εε  for the total axis range. Thus, even small errors in 
mirror alignment cause significant errors in the estimated positioning error [4]. 
For the Y-axis, the mirror misalignment causes an opposite error in the estimated 
positioning error equal to Xmm ∆⋅− )(2/1 21 εε . The ratio of the errors is such 
that they compensate each other for diagonal displacement measurements. They 
can only be corrected using a separate measurement for the slope of the 
positioning error of one of the axes. The estimated yaw error of the Y-axis can 
be used to further correct the obtained X-axis positioning error. The effect of a 
linear term in Y-axis yaw on the positioning error equals zero, as well as its 
contribution over the total axis range.  
     Estimates for the straightness errors )( iy xe  and )( ix ye  are obtained as: 
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Removing the slope through the estimated straightness errors also removes errors 
due to mirror misalignment. The squareness error lost in this process can be 
estimated from the diagonal measurements using the procedure of Section 3 
[2,4], thus avoiding errors due to mirror misalignment. 
     The estimated straightness error is affected by yaw errors, and compensation 
may be required to obtain reliable estimates. The first two terms of Equation (21) 
can be interpreted as the change in the straightness error of the X-axis measured 
at a variable tool offset such that the functional point of the tool is at the center 
of the X-axis. X-axis yaw acts on this variable tool offset, and the large offset at 
the end-points of the axis may result in large errors in the estimated straightness. 
     The estimates for the changes in straightness errors contain a term )( iz xx ε∆  
or )( iz yy ε∆ , that after summation approximates the integrated yaw error. A 
yaw error of 1 µrad/m of axis travel yields a parabolic straightness profile with a 
peak-to-valley error of 1/8 µm/m2. The integral can approximate the straightness 
profile of an axis whose straightness is determined by the guideway geometry. In 
that case, the obtained result does not contain information on straightness errors.  
     Reversal errors can be obtained by executing the step diagonals in both 
directions. Combining segments with the same direction of axis motion, 
including reversal motions, yields estimates for the uni-directional axis errors 
and their difference. Estimation of the repeatability of a parametric error requires 
care due to averaging, and may be affected by the repeatability of other 
parametric errors. For example, a non-repeatable positioning error, characterized 
by a standard deviation ))(( ix xes ∆ , affects the repeatability of the estimated 
straightness error )(ˆ iy xe∆  of that axis: 
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In the step-diagonal method, a parametric error is constructed as the cumulative 
sum of estimates for its change during incremental axis motions. This results in 
an accumulation of uncertainties introduced by non-repeatable measurement and 
machine errors whose value changes during the required incremental motion of 
the other axis, e.g., due to vibrations. In general, the resulting uncertainty will be 
proportional to the square root of the number of incremental steps of an axis. 
     Step-diagonal measurements with a retro-reflector are not affected by errors 
in the orientation of the tool (Equation 4). This simplifies the analysis and 
reduces the errors in the estimated positioning and straightness errors when 
angular errors are not corrected. Ignoring the effects of mirror misalignment, 
which are similar to those of the other configuration, yields:  
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5 Three-dimensional step-diagonal measurements 
 
In this section we analyze the results of three-dimensional step-diagonal 
measurements for the configuration where the target mirror is attached to the 
tool. Each new point on a diagonal can be reached through six different 
sequences of unidirectional single-axis movements. This provides for a 
maximum of seven new measurements, corresponding to the laser readings at the 
new corners of the cuboid spanned by the single-axis motions. The respective 
information is contained in the measurement of one edge of the cuboid per axis, 
and four independent differences between parallel edges. As in the two-
dimensional case, the two differences between the parallel edges of a face have 
an equal value, yielding 516 =−  independent constraints on the 12 edges. The 
findings of Section 4 show that, for rigid-body kinematics, the differences 
between parallel edges are only affected by the change in the angular errors of 
the Y- and Z-axes. Application of Equation (4) shows that a difference is not 
affected by the change in the pitch, )(yex∆ , of the Y-axis. The remaining 
angular errors can be estimated by solving the system of equations obtained from 
differences observed for two diagonals with a different direction in Y or Z, e.g.,: 
 
 )()(),,(),,( izyiyzABDC ynxynxiiidiiid εεδδ ∆∆−∆∆=−        (29)  

 )()(),,(),,( izyiyzABEF znxznxiiidiiid εεδδ ∆∆−∆∆=−         (30) 

 )()(),,(),,( izxixzADEH znyznyiiidiiid εεδδ ∆∆+∆∆−=−        (31) 
 )()(),,(),,( izyiyzABDC ynxynxkiidkiid εεδδ ∆∆+∆∆=−        (32)  

 )()(),,(),,( izyiyzABEF znxznxikkdikkd εεδδ ∆∆+∆∆=−        (33)  

 ,)()(),,(),,( izxixzADEH znyznyikkdikkd εεδδ ∆∆−∆∆−=−          (34)  
 
where each diagonal has a positive direction cosine in Z. With the estimation of 
the above angular errors we have exhausted the information in the differences 
between parallel edges. This leaves three edges per new point on a diagonal, one 
for each axis. Combining edges parallel to Z for the four step-diagonals yields: 
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where errors due to mirror misalignment have been ignored. For Z-axis motion, 
the mirror misalignment causes an error mxyz dn ε  in each measurement, where 

mε  is the misalignment angle of the mirror around a horizontal axis parallel to 
the mirror surface, and xyd  the length of the diagonal step in the XY plane. This 
yields an error in the estimated positioning error of the Z-axis equal to the 
average mirror misalignment angle times the total length of the diagonal in the 
XY plane. The angular machine errors affect the estimated straightness errors in 
a manner similar to the two-dimensional case. A correction can be obtained 
using separate measurements for the angular errors, or the estimates for the 
angular errors obtained from measurements of parallel edges (Equations 29-34). 
     Combining the errors observed for edges parallel to the Y-axis yields: 
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The first two terms of Equation (39) yield the positioning error of the Y-axis at a 
line through the center of the workspace. The result is affected by the pitch error 
of the Z-axis motion. The first two terms of Equation (40) yield the straightness 
error of the Y-axis in X at a line through the center of the workspace. The first 
two terms of Equation (41) yield the “straightness” error of the Y-axis in Z, 
measured at a variable tool offset such that the tool is at the center of the Y-axis. 
Equation (42) can, in principle, yield an estimate for the change in the roll error 
of the Y-axis. The respective uncertainty increases near the center of the axis.  
     Combining the errors observed for edges parallel to the X-axis yields: 
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The first three terms of Equation (43) yield the positioning error of the X-axis at 
a line through the center of the workspace. The first three terms of Equations 
(44) and (45) yield the “straightness” error of the X-axis at a line through the 
center of the workzone, measured at a variable tool offset such that the tool is at 
the center of the X-axis. The last terms in Equations (44) and (45) result in an 
approximation of the integrated average pitch and yaw errors for each of the 
points used in the estimation. 
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